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A s  a general ru le  the following conventions will be observed in 
*. this report. A superscript  (T) will cienote a total quantity, 1. e.  the 

result  of superposing initial p r c a s u r  1- , , , ~ b J W i i  - *  - - t ffccts and other loading 
i i i  effects. A superscr ipt  (n) will ridenote the. ri ( e r m  of a Fourier ex- 

pansion of the quantity. 1 ' Ijr med" quantity wi l l  de- 

note a nondimensional quantity, There cLre I M O  exceptions to this last  
rule, E' and X For explanatim of t h e d  c:.kcilptions and the method 
of nondimensionalization, see  Ar t ,  4 2 

double sign, e. g., 
series'' expansion of Art. 3. O is u s t ' c  

(See Art 3-  U), 

Cci-t,iin t e rms  will ca r ry  a 
+ , the "upper airp ' should  be used if the "upper 

The symbols have the followi. ,g n?ctti.ii1 is: 

4, 6 ,  z - - -coordinates of a p.>i!ii of t!ic shell; z is measured 
positive inward from the middle surface, Q and 8 

are the usual angles of a spherical  coordinate system. 
u , v, w - - -components of thc chsplaccment 

N N N ~ # ,  % e n  QI v cp z ,  02 - - - Arii:rnal s t r e s s  resultants 

q j o .  M$$* M o d -  - -internal stress couples 

X ,  Y ,  2 - - -components of surfact- ti-action 
n - - -denotes the n th term of Lie e...pansion 

E - - -Young's modulus 
u - - -Poisson's ratio 
a - - -undeformed radius of the middle  surface 
h - - -thickness of the shell 

T ( ~ '  - - -Fourier  coefficient of thc temperature increase 
- p  - - - Coefficient of thermal expansion. 

t 
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Eh3 D = I---- 
12 (I = vz; 
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In addition, certain symbols a r c  ~ s c . ~ !  which do not appear in the 
h-crral equations. 
duction. 

These symbols are  defined at the time of their intro- 

c 

I 

i 



4 . 
1.0.1 

Chnptei. 1, 

1.0 Introduction .__ A 

In this report  a system of ordinary diffc.i-eiitia1 equations govern- 
ing the behavior of spherical shells unde r  arbiti'tlr;, loads is derived. 
The resulting system is presented i n  the chapter  as equations 1. 1. 1 

through 1. 1. 16. 

integration technique, e. g. Runge-Kuttcl call bc c:lsily used. The 
actual method of solution wi l l  be d iscussLd L i l  ChFptt'r 5. 

The form of these equations is such that a numerical 

The accuracy of any engineering x i d ; . : L A s  IS limitcd by  the s ta r t -  
ing equations. 
the most accurate available at present. 
used, i. e. pi.l*bi I c t s  of displacements, c t c .  a r c  prcsumed negligible. 
However, this  analysis is designcd to in  i t i ~ :  the effects of initial pres-  
surization, and in this sense provides 211 :r-,,portaiit extension. In addi- 
tion, the only further assumptions are thost .  ilf the validity of Hooke's 
law and the common Kirchhoff hypothesis of t1ii:l shell theory. 

basic equations a r e  relatively free  of simp1ifJ.ing assumptions. Second, 
very complicated loading systems can bc bnd icd .  
is in the form of the quantities of most u s e  :a the designer ,  i. e . ,  s t r e s s  
and displacement. 

tion has been added. The thickness and material properties have been 
assumed constant. However, i t  is possible to  u s e  the equations 1. 1. 1- 

1.1.12 in the special case where the losding is asisymmetric and the 
thickness and material properties va ry  onlb in the direction of the gener- 
ator. A slight modification of the equations will allow variation of thick- 
ness  and material  properties in the direction of the generator for the 
case of a nonsymmetric loading. 

The basic equations used in this r.cp0r.t a r e  felt to be 
1 ,i.:c:ii- cqLLaiions have been 

Several advantages result  f rom th is  t u  IIC of analysis. F i r s t ,  the 

Third, the "output" 

l 

In addition to  the assumptions listed above, one additional r e s t r i c -  
I 

I 

I 
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1.1.2 

1.1 First Order Form of Equations - -  -- ----- - - - . - 

The following eight equat ions  a r  <: h t .  t', ;ai fo rm of the equations 

(See Chapter 
which are, for  a particular problem, to  irltc~grated numerically. It 
should be noted that these equations arc nondirmensional. 
4, Section 2, 3 The effects of ternpcratxrc' gradients are included in  

these equations. 

7 

2 
( d l  - { u co t  gJ } x = t - 7 &  - ( l +  v > } w  u n  d,X (n) 

d #  Sin t$ 

1.1.1 

1. 1.2 

1. 1.3 

1.1.4 
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1 . 1 . 3  
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i ,  I ,  

1 . 1 . 4  

I I ’  

(n)’ 2 2 n D1 + ( 1 - v ) ( 1 +  ---Y&-,] 1 w 
Sin t j  . 
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1. 1. 8 
I 

In addition t.0 the eight ucpcntftmt L-ariables computed above, 
the  following quantities are of inte rtbst as  "output data". 

i .  1. i o  I 
c 1.1.11 

k '3 



1.1.6 

1.1. 12 i 

? 
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\ 

I 1.1.14 

I 

where 

1. 1.35 

1. 1.16 



2.0.1 

Chapter 2. 

” *  9 ~ h . :  :\.ation of Equations -__- -  

T.lc basic e,juations used in t h i s  i*c.:iort a r e  based on the work 

i !,OV,. (.I Treatise on the Mathernatif-ai ‘I’heur>- of dlasticity, 4th*Ed., 
1 ...cy i’.~blications). 
.. ,t,cq;9. I., it may be pointcd out that it is fc.lt that his equations a r e  the 
..I : av;,iiable. One deviation wi l l  bc rnadt. f r o m  Love’s work. In the 
. :,:-cssions for  the stress-displacemt.nl I elations, w e  use the work of 
,,.:::p 0 (.4pplied Elasticity, 1st Ed. , McG ~ L M -  ITill). It w a s  found that 
,I, ..err ; ctclins one more te rm than Lavc.  2htl 1-ctcntion of th i s  extra 

:q : :;I actins justified in that other t c r i n c  o i  thc same order a r e  present, 
.:; LOVC Is analysis. 

The rationale 0.‘ I.o\.’c’s woi-k w i l l  not be discus;sed; 

u 

.i-r,ce this analysis iacludes 1 . b ~  t.ffi.i.t af  initial pressurization of 

2. 0.1 

A . : ~ * I L ‘  X 1s the s t r e s s  resultant due to  the inltLa.; pressurization and 
:, :s tiit s t r e s s  resultant caused by loacis I)ther than the initial pres-  

.: 1 . :I.- other .urntities use a simllar riotation. 

i 
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2. 1 E,luilibrium Ecluations 

On page 535, Love gives  the equilibrium e,juations as: 

__ .. - - -- -- -- - 

+ (ql' N, R + (12' N2 A )  t A B X = 0 

+ (rr' T1 B - r2 S A )  + A B Y  = 0 

t (pl' S1 B t p2' T2 A )  t ABZ (TI 

a (H1 €3) 8 (G2 A) 
- (GI Brl' t H2 ArZ1) + N2 A B  = 0 

a a  -ag 
l -  

a (G1 B) a (Hz A )  
a a  - +ap t (H1 Brl '  - Gg Ari l )  - N,  AB = 0 

% B p i 1  + G2 A q2'  - (H, B,' - H2 A pzI ) t ( Sl + S2 ) AB = 0 

2 .1 .1  

. 

2 . 1 .  1 

2, 1 . 2  

2 . 1 . 3  

2 . 1 . 4  

2 . 1 . 5  

2. 1 .  6 

Equations 2. 1.  1 - 2. 1 .  6 are extremely general. We introduce the 
following specialization to a spherical shell: 

-=-- 
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I 
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a = d  

. .  

o = t ?  

B = a Sin 4 

1 

2.1 .7  

For an explanation of the meanings of the various terms of Equa- 
tions 2. l .  7, see Figures 2. l .  l, 2. l. 2 and 2. l. 3. 

On using Equations 2. 1 . 7  in the equations of' Love, p. 523, we find: 

3.1.8 COS 6 a w a w  

2.1.9 1 
2. 1.10 



a .  

I I I ;I 

' \  '. I 
u,v, and w ore the 
at displocements in 

FIG. 2.1.1 
f *  

tions of I, 1 and if respectively 

FIG. 2.1.2 

components 
the direc- 

FIG. 2.1.3 
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2 . 1 . 4  

On substituting Equations 2 . 1 . 7  - 2. 1. 15 in 2.1, 1 - 2. 1.6, 

2 . 1 . 1 2  

For - a uniformly pressurized sphere with additional loads, we note: 

I 

2. 1.14 

2. 1. 15 

we find 

2. 1. 16 

I 



J 

1 
3 
I 
I 
I 
I 
I -  

1 -  . 
_ -  

I 

7 

I 

. 

2 .1 .21  



2,'2 Stress- Displacement Relations 

Wang, p. 340)are 

--- _-_--___-- -__ 
The stress  resultants and stress  couples (Bee, for example, 

Eh (e1()+ v c20) 

Eh Y i 2 . 2 . 1  

where for a sphere 

1 
a' Sin 6 

t 

t -q- 
a 

\I, \ 
U (T) 2 .2 .2  

i 
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Introducing . 

2.2.2 

and using Equations 2 .1 .  14 and 2 .2 .  2 in 2 .2 .  1 we obtain: - 

2.2 .3  

2.2.5 

2 .2 .6  

2.2.7 
2 + U a w + ~ y d ~ + v c ; t 4  g; 

a2 sinZ$ i-7 a a 

2 .2 .9  I 
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3.0.1 

Chapter 3. 

3. 0 Reduction to  Ordinary Differential Equations 

partial  differential equations derived in Chapter 2 is very difficult and 
time consuming, it ie expedient to expand the dopendent variables in a 
Fourier  series in the independent variable 6 , This expansion reduces 
the system of partial differential equations to a system of l inear ordin- 
a ry  differential equations which a re  much more tractable. 

trigonometric series of the form 

Since the solution, numerical o r  analytic, of the systems of 

- 

We now postulate expansions of the dependent variables in 

I 
3. 0.1 



I - - '  

where the symbol { sin n e  } indicates either a Cosine se r i e s  or a She 

se r i e s  used. In the following equations certain t e r m s  will have a double 
sign, e. g. ; this notation indicates the "upper eign" should be used 
when the "upper series" is ueed, etc. 

2.2 .4  - 2 .2 .9  and dividing out common t e r m q  we obtain the following 
system of ordinary differential equatione. 

Substituting equations 3.0. 1 in equations 2.1.16 - 2. 1.20 and 

1 
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3.0.9 

3.0.12 1 
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4.0. A 

Chapter 4. 

4 . 0  Reduction to First Order Form 

k 

In this Chi3FteI*, the ordinary differential equations, 3. 0 . 2  through 
*, . 0. 12 r+ , e +  ,*tS r l l l , *c . ( l  '<b 'ftjlqrn p;~lq.Lp.i~wrJiy SuitC*dI t t ~  cAJ A l . t . g ~ * t ~ -  

tjor,. 
;s cirected :Q Chapter 1, equations 1 . 1 . 1  through 1-  1- 16, where 

T'e reader primarily interested in the final form of the equations 

. _  . * -,, .. * ; . r , ,  . 
I [if- ~ t b y  to succebsiui i ~ ~ ~ i ~ i i p u l a t i ~ ) ~ ~  o! these equatlons I r e s  In thr. 

introduction of three new dependent variables, h tn) , +,,("I ; ~ t ~ d  4 (11) 

4 '  
The quantity X(")repreaents the slope of the median mrface i n  the dlrec- 

tion of the generator. 
the zlassica! Kirchhoff shear  of plate theory. The form of the quantity 

(n) is suggested by the equatirzns and is related to  the effective mem- 
brane edge shear for shells of revolution. Throughout this chapter, the 
main purpose will  be to  manipulate the basic equations into a fo rm such 
that on the left side of the equation we have a single f i r s t  derivative 
while on the right side we have only the quantities themselves. 
particular form is conveniently integrated by the Runge-Kutta method 
o r  some s imilar  integration scheme. 

(') is a quantity reminiscent of and related to $4 

+ o  

Thi8 

W e  introduce the new dependent variable 

4 . 0 . 1  

Eliminating Neztn) between 3.2.3 and 3.2.5,  we get 



I' 
1 . -. 
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1 

I 

I 
I 

I 
I 

b 

1 
I 

I 
1 
I 
I 
1- 
1' 
I 

c t 

i 
Eliminating Noz ') between 3 . 0 . 4  and 3 .0 .5 ,  we obtain 

J 

W e  now introduce a second new dependent variable, 

which implies 

Substituting 4.0.5 in 4.0.3 we obtain 

4.0.2 

4 . 0 . 2  

4.0.3 

4.0.4 

4. 0.5 



+ a 2’) = o 

Introducing the third new dependent variable 

I 
i 

4.0.3 

/ 

- .  
4.0.6 

4.0 .7  

we ale0 get 

Substituting 4 . 0 . 7  and 4 .0 .8  in 4.0 .2  we obtain: 

4.0.9 1 ” 



From 3.0 .7  

4.0.4 

4 . 0 .  10 

- c 

dutn) Eliminating .a between Equations 3.0.7 and 3.0.8, we obtain 
7 U 

’ dX(”) 3 between 3.0. 10 and 3.0.11, 
1 d u  cn) 

Eliminating [ - I Z K + Z i T  a we obtain 

Substitution of 4.0. 11 and 4.0. 12 into 4.0.9 yields 

n n 

1 
I 

4.0.11 

4.0.12 

4.0. 13 



and substitution of 4. 0. 7 into 3. 0. 9 yields 

Substitution of 3 . 2 .  12 and 4. 0. 1 into 4. 0. 14 leads to 

(n) ) w  + {Cot+ [ 1 +  + 3 )  v (n) { 2nDCot+ 
a E' a Et  Sin4 

Substituting 4. 0. 10 into 3. 0. 10, we get 

Substituting 4. 0. 14 into 3.0. 12, we obtain 

nD(1- v ) Cot 

4 . 0 . 5  

. 4. 0. 14 

4.0. 15 

4. 0. 16 

--l 

4. 0. 17 



4.0.6 

2 n D  
- + ( 2  2 a ElSin 4 ( 1 + D  

a2E1 

Upon substituting 4. 0. 17 into 4. 0. we obtain 

4. 0. 18 

4.0.10 

1 

1 
Substituting 4. 0. 14 into 4. 0. 7, we get 



4.0.7 

- ,  
I 

I 

I 
I 



., . .  . - .- 
4.0.8 

4.0 .22  

(n) 1 1 w  

If we presume that D, E' and v are constants, upon differentiating 
Equation 4.0.  15, we obtain 



* .  

, 

4.0.9 

D (n ) 2 

D 2 n D  2 m3D 
3 

n(1 t u  
3 

d aZEISin Q a2E'Sin 4 
+- 4. 0. 24 I 

J 



From 3 .0 .5 ,  we have 

I 

Upon differentiating 4.0.  17, one gets 

4.0 .  10 

L. 

4. 0. 25 

4. 0. 26 1 .  
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I _  

a' Et I 4.0.27 

Substitution. of 4. 0. 27 into 4. 0. 26 yields 

1 4.0.28 
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4 . 1 . 1  

4. 1 Summary of First Order Equations -- - - - .- -_ . - - - - - -- 
From the previoue section we summarize the results a s  follows: 

-\ 

4. 1 . 1  

1 

4; 1.2 
} dn) -+ { 2 n D  - 

a E 1 S i n 4 ( 1 t  2 a E' a E' 

(n) 2 - -  dh - { v n  - (1+)} Wb) - { ucot  ($} x 2 a d 4  aSin 4 
4. 1 . 4  



4. 1 . 2  

1 

2 G.1) + { nE'Cot$ [ (1-v ) +  & ]  } v - aSin 4 

. -  
2 N 2n D ( ( 1 - v ) -  F ]  

a2 Sin 4 (1 + 
cn) 

44 
A(n) - { (1-  v )  Cot$ } N 2 D - {N+ 

a'EI 

4. 1. 5 

4. 1 .  6 

I 
I 
I I 

i 
i 
I 



h 
U . 

aLE1 
n 

n A ( i + v )  D + 2 n 2 D  
a2ii Sin4 a Sin# ( l + D  

a2 E' 
t 

1 2 - ( ( 1 - v )  aE'Cot4 [ 

4 .1 .3  

4. 1 .7  

I 
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4. 1.4 

4. 1 .8  r 
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4. 1. 5 

4. 1.8 1. 
7 

t 

D 
1 

+ {  2 
a Et Sin4 (1t -D- 2 E' 

a6E1 

J 
- 4 .  1.13 
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4. 1.6 
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4. 2 Nondimensionalization -- of Equations 
---I- 

For engineering problems, it is frequently advantageous to  present 
This is particularly t r u e  where design 

The nondimensional form per-  
resu l t s  in a nondimensional form. 
techniques or general resul ts  are involved. 
mi t s  one set  of data o r  calculations to be applied to  a large number of prob- 
lems. Examination of the equations 4. 1. 1 through 4. 1. 14 shows that the 
selection of certain quantities as the nondimensionalizing factors  will  re- 
sult in some simplification of the equations. Accordingly, equations 4. 1. 1 
through 4. 1, 14 have been nondimensionalized. 
tions are presented in Chapter l as equations l. l. l through l. l. 16. 

The scheme of nondimensionalization is presented below. 
I 1  a primed quantity" wiil denote a nondimensional quantity. 
ception. 

These nondimensional equa- 

In general 
There is one ex- 

This is El,  a dimensional quantity as defined previously. 

a .. 

N' N 
= E r  

D 
a2E1 

= -  

4.2. 1 



5.0.1 

Ckii\;+,?-- i . 

Integration of Equations 

The  solution of the problem for s t resses  and deflections in a 
spherical shel l  has now been reduced to the integration of a set  of eight 
l inear f i rs t  -order  differential equations. This se t  is readily integrated 
on a digital computer using one of several integration procedures, The 
progrdm prepared a s  part  of this project utilizes a fourth-order Runge- 
Kutta process. 

The numerical integration presents several  mathematical compli- 
cations, each of which has been resolved in the accompanying program. 

The first ,  and most easily overcome, complication results from 
the fact tliat the problems to be so?ved a re  boundary value problems where- 
a s  numerical integration schemes are directly applicable only to initial 
value problems. 
the boundary value problems can be solved by constructing a l inear corn- 
bination of solutions to judiciously chosen initial value problems so that 
both the initial and final boundary conditions a r e  met. 

lie within the region of integration. 
singularities a t  these points. In o rde r  to avoid these singularities, such 
artifices a s  a small  hole, a small  rigid plug, o r  a small  elastic plate or 
cap may be introduced into the program. In the case  of the program p res -  
ented, an extremely small  hole subtending a half-angle equal to t imes  
the outside angle is used. 

The program may be readily modified to use any of the alternate 
possibilities which have been mentioned above. 

Since the governing differential equations a r e  linear, 

f 
u 

The second difficulty occurs  when the angles J, = 0 and/or  8 = 
The differential equations contain 

I 


